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Abstract. Two effects are identified that affect the visibility of the Mott transition in an atomic gas in
an optical lattice confined in a power-law potential. The transition can be made more pronounced by
increasing the power law, but at the same time, experimental uncertainty in the number of particles will
induce corresponding fluctuations in the measured condensate fraction. Calculations in two dimensions
indicate that a potential slightly more flat-bottomed than a quadratic one is to be preferred for a wide
range of particle number fluctuation size.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations

In a spectacular experiment a few years ago, the transition
from a superfluid to a Mott insulator was realized in a gas
of cold atoms in an optical lattice by Greiner et al. [1].
The experiment marked the birth of a new subfield of
physics, where theoretical statistical-physics models, until
then considered to be mostly of academic interest or crude
approximations to real materials, can now be realized in
experiment. With the help of atoms in optical lattices,
it is hoped that fundamental questions regarding phase
transitions can be addressed, as well as applications to
e.g. quantum information. Nevertheless, a few practical
issues remain to be sorted out. One such issue concerns
the role of the confining potential.

A gas of spinless bosonic atoms in an optical lattice is
known to be well described by the Hubbard model [2],
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where t is the tunneling matrix element, µ is the chemical
potential, V (r) is the spatially dependent trapping poten-
tial, and r is a dimensionless site index. The operators
ar,a†

r destroy and create a particle at the site r, respec-
tively, and obey Bose commutation relations. The units
are here chosen so that the on-site interaction strength,
i.e., the prefactor of the first term in (1), is unity. The sum
subscripted 〈rr′〉 runs over all pairs of nearest-neighbor
sites. In the absence of an external potential V (r), this
Hamiltonian exhibits a quantum phase transition at zero
temperature, separating two ground states [3]: when the
tunneling matrix element t is strong enough, there is phase
coherence over the entire sample which puts the system
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in its superfluid state, and there exists an accompany-
ing Bose-Einstein condensed fraction of the gas that can
be measured in time-of-flight experiments [4]. For weaker
tunneling, phase coherence is lost, the number of atoms
per site is locked to an integer, and number fluctuations
are suppressed. This is the Mott insulating state.

In the experiment reported in reference [1], just as in
nearly all experiments on optical lattices, the atoms were
contained in a quadratic, i.e., harmonic-oscillator poten-
tial, in order for them not to escape. As a result, the
transition between superfluid and Mott insulator is not
simultaneous over the whole sample, but takes place via
an intermediate state where part of the atomic cloud is su-
perfluid and part is Mott insulating. Such a state is often
called a “Mott plateau” state because of the characteristic
density profile, in which the density is fixed to an integer
in confined regions. This is well known and it is also well
understood [5,6]. In effect, it is the local confining poten-
tial that contributes a (negative) addition to the chemical
potential, resulting in a spatially dependent critical point
for the phase transition.

In order to see a clear Mott transition one would need
to get rid of the effects of the confining potential. It has
therefore been proposed that the harmonic-oscillator po-
tential could be replaced by a more flat-bottomed variety,
e.g., a quartic or sixth-power potential, more similar to
a square well [7]. In such a potential, the local chemical
potential varies slowly in the center of the sample, where
most atoms are residing, and the Mott transition would
be sharper.

However, and this is the theme of the present paper,
a pure Mott insulating state requires commensurate fill-
ing, i.e., the number of particles has to match the num-
ber of wells. In a quadratic potential this requirement is

http://dx.doi.org/10.1140/epjd/e2008-00003-9
http://www.epj.org


518 The European Physical Journal D

−20 −10 0 10 20
0

0.5

1

1.5

r

n

(a) p=2

−20 −10 0 10 20
0

0.5

1

1.5

2

r

(b) p=8

Fig. 1. Cross-section of the density profiles in a two-
dimensional power-law potential with power law p = 2 (a),
and p = 8 (b), respectively. The number of atoms is N = 300
(full lines), N = 400 (dashed), and N = 500 (dotted).

relaxed because excess atoms are absorbed into a super-
fluid region, where the filling is noninteger, at the surface
of the sample. Using a flat-bottomed potential may put
more severe constraints on the number of particles, which
presents a problem, since in an actual experiment one does
not have very precise control over this number. It is the
purpose of the present study to explore the balance be-
tween on the one hand, the gradual character of the Mott
transition, and on the other hand, the uncertainty in the
particle number.

We consider two-dimensional systems in this study,
since a power-law potential is more easily created in the
plane than in three dimensions. The external potential is
taken to be

V (r) = (|r|/r0)p, (2)

where |r| is the distance from the center in two dimen-
sions measured in unit cells, r0 is a constant length, and
p is the power law. In experiments with trapped atoms,
quadratic potentials are prevailing for natural reasons (the
first term in the expansion around a minimum of a smooth
function is in general quadratic). A fourth-order potential
has been created by superimposing a Gaussian optical po-
tential on a quadratic magnetic one in order to observe
fast-rotating vortex configurations [8]. Other than that,
realizations of high-order power-law potentials for atoms
have been scarce. In two dimensions, an optical power-law
potential could be realized using Gauss-Laguerre optical
beams, Fourier optics, or masks. The confinement to two
dimensions can be realized by applying an external field
in that direction, or alternatively, by applying a strong
optical-lattice potential in the third direction. The latter
method, however, creates a number of two-dimensional
systems with different numbers of particles, which will cer-
tainly affect the observability of the Mott transition con-
sidered here. A three-dimensional anharmonic trap would
have to be created by combining several two-dimensional
potentials. The technically easiest solution is probably to
apply an anharmonic trap in a plane while the third di-
mension remains harmonically trapped. This will enhance
the observability of the transition compared to the purely
harmonic trapping, but not to the same extent as in the
two-dimensional case.

Figure 1 shows a few examples of density profiles for
a two-dimensional system in quadratic (p = 2) and p = 8
power-law potentials.

The most common way of detecting the state of an
atomic gas in an optical lattice is by time of flight, that
is, to release the sample from the trapping potential and
image it after some time of expansion. From the resulting
density profile one may deduce the fraction of coherent
atoms, i.e., the condensate fraction [4]. Recently, experi-
mental techniques have been developed for directly detect-
ing Mott plateaus in situ [9,10]; nevertheless, that type of
method addresses the occupation number and not the co-
herence, so the time-of-flight method remains the most
straightforward. A harmonically trapped gas will in such
an experiment exhibit a gradually increasing condensate
fraction as the tunneling is increased.

In order to observe a sharper Mott transition, it was
suggested in reference [7] that the potential can be made
more similar to a square well. For a power-law potential
of the form (2), the limit p → ∞ corresponds to a square
well of radius r0. In a flat-bottomed potential, the typical
situation will be that nearly all atoms will be in the same
state (Mott insulating or superfluid), instead of having
appreciable fractions of atoms in both states for a broad
range of parameter values. However, now there appears a
new problem: a flat-bottomed potential is much more sen-
sitive to the exact number of particles. In a homogeneous
Hubbard model, the Mott insulating state can only occur
if the filling is commensurate, that is, if the number of par-
ticles is exactly an integer multiple of the number of wells:
adding one particle to a Mott insulator results in a super-
fluid. In a power-law potential, there is no such restriction
on the number of particles, but the region in phase space
that can accommodate a partially Mott insulating system
will be smaller for a flat-bottomed potential than for a
more rounded one. This can be seen Figure 1, where the
density profiles for a one-dimensional system with differ-
ent particle numbers are compared. In the quadratic p = 2
trap, an increase of the number of particles does not have
a dramatic effect on the profile or the number of Mott
insulating atoms. In contrast, for a p = 8 potential illus-
trated in Figure 1b, it is seen how an increase in particle
number from N = 300 to 400 takes most atoms out of the
Mott phase.

In order to quantify this, we use the Gutzwiller mean-
field method with a local-density approximation. The
mean-field approximation is in two dimensions known to
underestimate the size of the Mott insulating regions in
phase space by about 40% [11], while the local-density ap-
proximation typically underestimates the superfluid frac-
tion [5]. The fraction of Bose-Einstein condensed atoms is
defined as

NC

N
=

∑
r |〈ar〉|2∑
r〈a†
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This fraction can be inferred from experimental measure-
ments [4] and is a direct quantitative measure of the state
of the system. Inverting the definition of a local chemical
potential,

µ(r) = µ − V (r) = µ −
( |r|

r0

)p

, (4)
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Fig. 2. Fraction of condensed atoms, NC/N , for a Bose-
Hubbard model in a power-law trapping potential as a function
of the tunneling matrix element t and the number of atoms di-
vided by the trap area, N/πr2

0. The power law of the potential
is (a) p = 2, (b) 4, (c) 8, and (d) 20.

one can apply a local-density approximation to transform
the spatial sum to a sum over µ′ ≡ µ(r), which in two
dimensions reads

NC

N
=

∫ µ

µ0
dµ′ dr

dµ′ 2πr(µ′)nC(µ′)
∫ µ

µ0
dµ′ dr

dµ′ 2πr(µ′)n(µ′)
, (5)

where nC(µ) = |〈a〉|2 and n(µ) = 〈a†a〉 are the conden-
sate density and total density, respectively, for a homo-
geneous sample at chemical potential µ. The lower limit
µ0 is the chemical potential at which N vanishes; it obeys
µ0 ≤ 0 with the equality holding at vanishing tunnel-
ing matrix element t. These functions have been com-
puted and tabulated, whereafter the integrals have been
summed for a range of particle number N and tunneling
matrix element t. The result is displayed in Figure 2. It
is seen that for more flat-bottomed potentials, the tran-
sition between the Mott and superfluid states, i.e., from
zero to non-negligible condensate fraction, is steeper. At
the same time, the Mott state occupies a much smaller
region in phase space for the flat-bottomed potentials. It
is this tradeoff that has to be considered in experiment:
in order to see a sharp Mott transition, one needs to have
control over the number of particles.

Next, we simulate an experiment where the con-
densate fraction is measured for a series of increasing
tunneling matrix element t (i.e., decreasing optical lat-
tice irradiance), where N has been allowed to fluctuate.
Experimentally, controlling the number of particles is very
difficult [12], but the number can be measured afterwards
to within certain bounds, so on performing a series of runs,
one may apply post-selection, i.e., only the data from those
runs that correspond to the desired number is included in
the analysis. While the relative number between different
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Fig. 3. Outcome of a simulated experiment measuring the
fraction of condensed atoms NC/N in a trap, traversing the
Mott transition as the tunneling t is increased while the num-
ber of atoms is allowed to fluctuate within 10% according to a
uniform random distribution. The different curves correspond
to different power laws p of the two-dimensional trapping po-
tential.

shots is quite easy to measure, inferring the absolute num-
ber is more problematic and may produce a systematic
error [13]. In the simulation, the average particle number
〈N〉 is chosen to lie in the most pronounced Mott insulat-
ing region seen in Figure 2. For definiteness, 〈N〉 was cho-
sen to lie at the tip of the iso-condensate fraction curve for
NC/N = 0.1. Thus, for p = 2 we choose 〈N〉 = 0.73πr2

0,
and so on; for p = 20 we choose 〈N〉 = 1.0πr2

0, corre-
sponding to a filling of one particle per site. The fluctu-
ations around the mean particle number are assumed to
be uniform, as they would if the number was controlled
by post-selection. Figure 3 shows the result for a fluctua-
tion of 10 percent. As expected, for the quadratic p = 2
potential, the uncertainty in particle number has little ef-
fect, but the transition is gradual. In contrast, for the most
flat-bottomed potential, p = 20, the transition would have
been much sharper, but the uncertainty in the number of
particles ruins the observability of this sharp transition.
However, in the intermediate range of powers, both effects
may apparently be working in favor: the transition is rea-
sonably sharp as a function of t, yet the Mott insulating
state covers a broad enough range of particle number N
that the experimental uncertainty can be accommodated.
Upon optical inspection, it seems that in this example, all
power laws p between 2 and 20 yield about equally sen-
sible results. As noted above, the use of the local-density
approximation slightly underestimates the spatial size of
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Fig. 4. Error in fitting the simulated data for the coherent
fraction of atoms NC/N , as a function of the power law of the
trapping potential. The width ∆N of the simulated random
distribution of particle number is indicated in the legend.

the superfluid regions in the trapped sample, and as a re-
sult, an exact calculation may have showed a slightly more
rounded transition.

As an example calculation in order to quantify these
considerations, we try to locate the transition by fitting
the simulated data NC/N to a function of the form

f(t) =
{

0, t < tc,
β(t − tc)α, t ≥ tc,

(6)

where α, β, and tc are fitting parameters; the resulting
value for tc is the critical point of the Mott transition. In
Figure 4, the squared residual error of the fit,

∆2 = 〈|NC/N − f(t)|2〉, (7)

is displayed for different power laws p and uncertainties
in particle number ∆N . Clearly, the error in the fit is
not dramatically different for different power laws, but
for very small uncertainty, the minimum is of course
obtained for the most flat-bottomed trap, p = 20. For
the largest uncertainties of 15% and 20%, the best fit is
obtained for the p = 8 trap, where the scatter in the data
is smaller. Further numerical experimentation, not shown
here, indicates that the p = 2 trap is best when the un-
certainty exceeds about 30%. For the middle-ground case,
with uncertainty 10%, it is an intermediate power law,
p = 12, that produces the best fit. So indeed, for a modest

uncertainty in particle number there seems to exist a range
of power law where neither of the two competing processes
is very strong, and the clearest Mott transition occurs for
an intermediate power-law potential.

Summing up, in power-law potentials one faces a trade-
off between two effects that affect the detectability of a
Mott insulator. On the one hand, a flat-bottomed poten-
tial (i.e., a high power law) is preferred in order to make
the Mott transition sharper. On the other hand, such a
potential will increase the precision with which the num-
ber of particles has to be controlled. It was seen in an
example simulation that for an uncertainty in number be-
tween ten and twenty percent, a power law of about 8
yields the most accurate determination of the Mott tran-
sition; if the uncertainty can be made smaller, then a very
flat-bottomed potential with a power law above 10 yields
the best result.

This project was financially supported by the Swedish Research
Council, Vetenskapsr̊adet.

References

1. M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, I. Bloch,
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